2

Mark schemes

Q1.

- (a) M1 idea of ensuring condenser fills with water
 - M2 idea that condenser is cool(er) or ensuring (more) vapour condenses

(b) M1 elimination

OR

$$CH_3$$
 H
 CH_3 CH
 CH_3 CH
 CH_3 CH
 CH_3 CH
 CH_3 CH

M1 ignore dehydration; ignore reference to acid-catalysed

- M2 correct protonated intermediate with OH₂⁺
- M3 loss of H₂O: correct arrow from middle of C-O bond to the O
- **M4** loss of H⁺: correct arrow from middle of correct C-H bond to correct C-C bond

M2 + charge anywhere on OH₂ group

M3 and M4 can be two separate steps or all in one step - if two steps shown then the correct carbocation is part of M4

Ignore structure of product

For **M3/4**, penalise extra arrows on the original structure (or elsewhere) that contradict "correct" ones

- (c) Correct answer scores 5
 - **M1** mass of alcohol = 12×0.818 (= 9.816 g)

M2 amount of alcohol =
$$\frac{M1}{116(.0)}$$
 (= 0.0846 mol)

M3 $M_{\rm r}$ of alkene = 98(.0)

M4 mass of alkene expected = $M2 \times M3$ (= 8.29 g)

M5 % yield =
$$\frac{6.12}{M4}$$
 × 100 = 73.8% (at least 2sf)

Alternative

M4 mol of alkene formed = $\frac{6.12}{M3}$ (= 0.0624 mol)

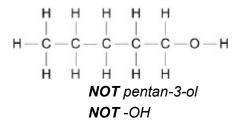
M5 % yield =
$$\frac{M4}{M2}$$
 × 100 = 73.8% (at least 2sf)

Allow ECF at each stage

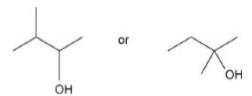
M5 should be an attempt at (their) mass (or moles) of alkene achieved divided by their mass (or moles) of alkene expected x 100

5

[11]


1

1


1

Q2.

(a) Displayed formula of pentan-1-ol

Skeletal formula of 3-methylbutan-2-ol or 2-methylbutan-2-ol (b)

IGNORE numbers on C atoms

IGNORE 'dots' at junctions

IGNORE other non-skeletal structures

IGNORE skeletal structure of pentan-2-ol

NOT other incorrect skeletal structures

NOT O-H

NOT if bond clearly to H of OH

(c) one of these compounds

Any structural representation of correct compound

(d)
$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 - \text{C} - \text{CH}_2 - \text{OH} \\ \text{CH}_3 \\ \text{CH}_3 \end{array}$$
 Any structural representation of correct compound

M1 loss of H₂O: arrow from C-O bond to O

M2 loss of H*: arrow from correct C-H bond to correct C-C bond

M3 elimination

M1/M2 list principle for additional arrows on any structure

M1 NOT if arrow to +

M3 IGNORE acid-catalysed / dehydration

NOT nucleophilic / addition / electrophilic

Any structural representation of correct compound

If skeletal CH₂ not needed Allow rings in place of C₆H₅

[8]

Q3.

(a) M1 $6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$

1

M2 $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$ Allow C_2H_6O for ethanol formula

1

M3 $2C_2H_5OH + 6O_2 \rightarrow 4CO_2 + 6H_2O$ **M1/2/3** allow multiples **M3** $C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$

1

M4 <u>explains</u> with reference to relevant equations that formation of C₆H₁₂O₆ takes in 6CO₂ and fermentation and combustion of ethanol gives out 6CO₂

M4 depends on having appropriate equations in **M1/2/3** showing 6 CO₂ in and out

1

(b) transport (from South America to Europe) produces CO₂ / has <u>C emissions</u> / has <u>larger C footprint</u>

Process to separate ethanol from propanone and butan-1-ol produces CO₂ / has <u>C emissions</u> / has larger C footprint

(c) **M1** 685.5 (686), 668(.25), 595(.33...) in third column of table **M1** ignore any minus sign on values

1

M2 depends on their answer to **M1** – must be the compound giving most energy per mole of CO₂ released (correct **M1** would give ethanol)

M2 need evidence of attempt to calculate energy released per C atom (i.e. per mole of CO₂ formed)

(made - broken))

(f) **M1** electrophilic addition

M2 must show an arrow from the double bond towards the H atom of the H₂SO₄ molecule

M2 ignore partial negative charges on the double bond

M3 must show the breaking of the H-O bond in H₂SO₄

M3 penalise incorrect partial charges on the H–O bond and penalise formal charges

M4 is for the structure of the correct carbocation

Penalise **M4** if there is a bond drawn to the positive charge

M5 must show an arrow from the lone pair of electrons on the correct oxygen of HSO₄⁻ towards the positively charged atom of their carbocation drawn

All arrows are double-headed. Penalise one mark from the total for **2-5** if half headed arrows are used Do not penalise the "correct" use of "sticks" Penalise only once in any part of the mechanism for a line and two dots to show a bond

For **M2** / **3**, the full structure of H_2SO_4 does not need to be shown, but the key features for the mechanism should be shown and the formula must be correct. Penalise only once in **M2** / **3** an incorrect but genuine attempt at the structure of sulfuric acid

Max 3 of 4 marks (M2-5) for wrong organic reactant or wrong carbocation (ignore structure of product)

If attack is shown from C=C to H⁺ rather than H₂SO₄, then allow **M2** but not **M3**

For **M5**, credit attack on a partially positively charged carbocation structure, but penalise **M4** for the structure of the carbocation

For **M5**, the full structure of HSO₄⁻ is not essential, but attack must come from a lone pair on an

1

1

individual oxygen on HSO_4 , but the – sign could by anywhere on the ion (eg :OSO₃H-)

(g) M1 formed from less stable carbocation

M1 must be clear that it is the stability of the carbocation that matters rather than the stability of the alcohol

M2 formed from primary rather than secondary carbocation

M2 allow 1 mark for primary carbocation is less stable than secondary carbocation even if not clear that product is formed from a carbocation (but must be clear that the alcohols are not the carbocations)

[21]

0	4	
w	_	

(a) Wear gloves

1

Conc phosphoric acid is corrosive

1

Allow wash spillages with lots of water

OR

Use a fume cupboard Volatile organic compounds are harmful / toxic Allow work in a well-ventilated lab space

OR

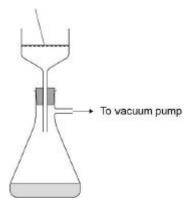
Keep away from naked flames Organic compounds are flammable

> Other valid suggestions eg heating mantle or electric heater Not water bath

OR

Periodically release pressure inside separating funnel Prevent build-up of pressure

(b) To remove (water) soluble impurities


Allow to remove (excess) acid

.

(c) To remove water / absorb water / dry the liquid

Allow drying agent

(d)

Deduct a mark(s) for error(s) / omission(s) Minimum

- Cross sectional (ie funnel top and end shown open)
- Bung or collar drawn
- (Buchner) Funnel approximate shape WITH label
- Filter paper WITH label

2

(e) Impurity: hexan-1-ol

If hexan-3-ol allow ecf for M2

M1

Reason: It is likely to have a similar boiling point

M2

(f) Mass hex-1-ene = 11.0×0.678 (or = 7.46 g)

Allow consequential marks for M2,M3,M4

M1

n hex-1-ene = $\frac{7.46}{84.0}$ (or = 0.0888)

M2

Mass of product = $0.0888 \times 0.31 \times 102$

M3

Mass product = 2.8 g

Allow answers 2.8 or 2.9 only

M4

[12]